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Abstract

A simple Jeffcott rotor is considered with both external and internal damping. Coefficient of internal
damping is subject to temporal random variations which may occasionally bring the rotor into the domain
of dynamic instability. The corresponding sporadic outbreaks in the rotor’s vibrational response (whirl) are
studied by applying the Krylov–Bogoliubov averaging method to the complex equation of motion and
using parabolic approximation for the random coefficient of the internal damping. This results in an
explicit analytical solution for the radius of whirl which may be used for predicting reliability of the rotor.
Furthermore, a convenient procedure is described for interpreting measured on-line test data for the rotor.
Namely, the mean value of the coefficient of internal damping as well as its standard deviation and mean
frequency of temporal variations may be estimated directly from the trace of whirl radius which exhibits
spontaneous random outbreaks in response.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Internal or ‘‘rotating’’ damping is a well-known source of potential dynamic instability of shafts
operating at supercritical speeds [1]. This kind of destabilizing damping may be present due to
energy dissipation in the shaft’s material or rubbing between rotating components. Similar effect
in some cases may also be the result of fluid flow in labyrinth seals, journal bearings, etc., with a
see front matter r 2004 Elsevier Ltd. All rights reserved.
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model of internal damping providing at least qualitatively an adequate description for flow-
induced dynamic instabilities [2]. In such cases, certain random temporal variations in the flow
conditions may be expected sometimes. The shaft may then be occasionally brought into the
instability domain for brief periods of time even if it is nominally stable, i.e. if the mean or
expected value of the internal damping coefficient corresponds to a stable rotation of the shaft.
Sporadic outbreaks of the shaft’s vibration would then be observed due to these short-term
excursions of the internal damping coefficient into the instability domain, with a small level of
response between the relatively rare outbreaks. This kind of response may be observed if the shaft
operates close to the instability threshold. The name ‘‘intermittency’’ may be used for this
behaviour by analogy with fluid mechanics where it is used for the transitional state between
laminar and turbulent flows. For vibrating systems with random variations of parameters this
name may be applied to the transitional state between responses within domains of stability and
instability [3]. As long as the system’s reliability is not hundred per cent guaranteed in case of
operation within such a transitional state the response analysis may be of importance both for
predicting reliability at the design stage of a shaft system and for interpreting results of its tests
where intermittent behaviour is observed.
This kind of analysis has been made in Ref. [3] for a single dof system with a randomly varying

damping coefficient. A similar analysis is presented in this paper for a simple single-mass/two dof
Jeffcott rotor which is prone to dynamic instability of the forward-whirl type. The analysis is
based on the Krylov–Bogoliubov (KB) averaging method [4] and on an asymptotic parabolic
approximation for the randomly varying internal damping coefficient within the instability
domain [5,6]. It results in an explicit relation between peak values of a radius of the shaft’s whirl
and of the damping coefficient during its brief excursion into the instability domain. In this way
the reliability analysis for the system as based on the solution to the first-passage problem for the
response or on evaluating probability density function (p.d.f.) of response peaks is reduced to the
corresponding problems for the internal damping coefficient. Furthermore, the analytical solution
is used also to derive a simple identification procedure for the system from its measured (on-line)
response. Namely, the mean value of the damping coefficient can be estimated as well as its
standard deviation and mean frequency of its temporal variations.
2. Analysis of transient response

Consider a simple Jeffcott rotor with weightless shaft of a stiffness K rotating with angular
velocity v: The horizontal shaft carries a disk of mass m at its midspan and possesses both external
or ‘‘nonrotating’’ damping and internal or ‘‘rotating’’ damping with corresponding damping
coefficients cn and cr; respectively. The latter of these coefficients experience temporal variations
which are assumed to be slow compared with the shaft’s natural frequency or critical speed. Let
xðtÞ and yðtÞ be lateral horizontal and vertical displacements, respectively, of the disk’s centre in
the inertial frame with origin at the undeformed shaft’s axis. Then, neglecting gravity force for
sufficiently high rotation speeds and introducing complex displacement z ¼ x þ iy; i ¼

ffiffiffiffiffiffiffi
�1

p
one

can write the following single complex equation of motion [1,2]:

€z þ 2ðaþ bðtÞÞ_z þ O2z � 2ibðtÞvz ¼ 0; (1)
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where O2 ¼ K=m; a ¼ cn=2m; b ¼ cr=2m: Let bðtÞ be a stationary random process with mean value
b0 so that bðtÞ ¼ b0 þ qðtÞ; where qðtÞ is its zero-mean part with power spectral density (PSD)
FqqðoÞ: We also denote by sq and l standard deviation and mean frequency, respectively, of
qðtÞ; where

s2q ¼

Z 1

�1

FqqðoÞdo and l2 ¼ s�2
q

Z 1

�1

o2FqqðoÞdo: (2)

The complex Eq. (1) can be solved analytically for the transient response of a lightly damped shaft
by the asymptotic Krylov–Bogoliubov method of averaging over the response period [4]. Thus,
assume that both damping ratios are small, namely a=O51; b=O51 and also l5O; the last
condition being that of slow temporal variations in the internal damping. The approximate
solution may be represented then in the same form as that for the corresponding undamped
system, namely

z ¼ Aþ expðiOtÞ þ A� expð�iOtÞ; _z ¼ iO½Aþ expðiOtÞ � A� expð�iOtÞ	: (3)

Here, Aþ and A� are amplitudes (complex in general) of the forward and backward whirl,
respectively. In the present case of transient response of a damped system they are functions of
time which are found to be slowly varying under the above assumptions. Therefore, the KB-
averaging over the response period can be applied after the basic equation is reduced to a form
with small parameter at the RHS. Resolving the equations (3) for Aþ and A� and differentiating
provides this reduction, so that

_Aþ ¼ ð1=2Þ
d

dt
½ðz þ _z=iOÞ expð�iOtÞ	

¼ ð1=2iOÞð€z þ O2zÞ expð�iOtÞ

¼ ð1=2iOÞ½�2ðaþ bÞ_z þ 2ivbz	 expð�iOtÞ

¼ � ðaþ bÞðAþ expðiOtÞ � A� expð�iOtÞÞ expð�iOtÞ

þ ðbv=OÞðAþ expðiOtÞ þ A� expð�iOtÞÞ expð�iOtÞ

ffi ð�a� bþ bv=OÞAþ ð4Þ

and similarly,

_A� ffi �ðaþ bþ bv=OÞA�: (5)

The last, approximate equality in Eq. (4) is actually obtained by applying the KB-averaging [4],
which resulted just in neglecting terms with the complex exponent expð�2iOtÞ; function bðtÞ which
is assumed to be slowly varying compared with expðiOtÞ; expð�iOtÞ is regarded as constant in the
‘‘fast’’ time as long as its variations within response period 2p=O should be small. Thus, the KB-
averaging resulted in uncoupling equations for the forward and backward whirl.
It can be seen from Eq. (4) that in case of constant b the shaft is stable if v=Oo1þ a=b and

unstable otherwise; the instability is possible only in case of supercritical operation speed, that is
v=O41; whereas the mode of instability is clearly seen to be the forward whirl. Whilst these results
are clearly the same as those obtained from exact solution to Eq. (1) with b ¼ const [1], reduction
to the single first-order ODE (1) provides also the possibility for analytical study of transient
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vibrations. As for the backward whirl, it always decays as can be seen from Eq. (5). Therefore
A�ðtÞ � 0 as long as A�ð0Þ ¼ 0: This initial condition will be adopted here.
The following analysis proceeds along the same lines as that for a single dof system with

random temporal variations of damping [3]. Denoting

g ¼ a=ðv=O� 1Þ � b0; where g40; gðtÞ ¼ qðtÞ=sq; t ¼ lt; u ¼ g=sq; (6)

Eq. (4) is reduced to

dAþ=dt ¼ ðv=O� 1Þðsq=lÞ½�u þ gðtÞ	Aþ: (7)

Assumption g40 implies that the ‘‘nominal’’ shaft, i.e. one without variations in the internal
damping, is stable. However, it becomes ‘‘temporary unstable’’ whenever the (slow) random
process gðtÞ crosses level u with positive derivative and remains temporarily above this level.
To predict the response amplitude during its corresponding outbreak one can use the
following asymptotic parabolic approximation for gðtÞ after this upcrossing [5] (also called
Slepian model [6]):

guðt=uÞ ffi u þ ð1=uÞðBt � l2t2=2Þ; so that

guðtÞ ffi u þ Bt � ðu=2ÞðltÞ2 and maxt guðtÞ ¼ guðB=l
2uÞ ¼ gp ¼ u þ B2=2l2u:

(8)

Here, subscript ‘‘u’’ for gðtÞ implies that the process is considered immediately after upcrossing the
level u; this subscript shall be dropped in the following whereas subscript ‘‘p’’ will be used for peak
values of gðtÞ and of the response variables. A local origin of the nondimensional time t ¼ 0 is
introduced here at the instant of upcrossing whereas B is a random slope of gðtÞ at this instant; it is
a random variable with standard deviation l and in case of a Gaussian gðtÞ it has the Raleigh
p.d.f. [5,6]. Subscript ‘‘p’’ for g denotes peak value of this process within domain g4u:
Substituting now expression (8) into the ODE (7) and integrating yields

AþðtÞ ¼ Aþð0Þ expfk½ðB=lÞðt2=2Þ � ut3=6	g; where k ¼ ðv=O� 1Þðsq=lÞ: (9)

Whilst the resulting amplitude AþðtÞ will be complex as long as its initial value at t ¼ 0 is, a
similar expression can be obtained for an essentially real quantity with a clear physical meaning—
radius of whirl rðtÞ: Thus relation (3) with A�ðtÞ ffi 0 and solution (9) yield

rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼

ffiffiffiffiffiffiffi
zz�

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþð0ÞA

�
þð0Þ

q
¼ rð0Þ expfk½ðB=lÞðt2=2Þ � ut3=6	g: (10)

Here, star superscript denotes complex conjugate quantity whereas rð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþð0ÞA

�
þð0Þ

p
is the

initial radius of whirl which should not be zero to obtain a nonzero response; its value for design
analyses should be estimated by evaluating the response level during operation within the stability
domain. For example, the vibration of a stable shaft may be excited by its unbalance due to offset
c of the disk’s mass centre from the geometrical centre; in this case, the initial radius of whirl may
be estimated as rð0Þ ¼ c=½1� ðO=vÞ2	 if v � Oba; that is, in case of steady operation far beyond
the critical rotation speed [1]. It should be added also that in real-life applications the initial
conditions would not necessarily be the same as adopted in this paper; the actual reason for
absence of a backward whirl within the instability domain is high magnification of the forward
whirl during excursions into this domain which makes this mode of response dominant over the
whole response background of the stable shaft.
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According to the solution (10), the peak value of rðtÞ is attained at the final instant tf ¼ 2B=lu

of the excursion into the instability domain—when gðtÞ becomes equal to u for the second time—
and this peak value is found to be

rp ¼ rðtf Þ ¼ rð0Þ exp½ð2k=3u2ÞðB=lÞ3	: (11)

Thus, the peak value of the whirl radius attained due to short-term excursion into the domain of
dynamic instability has been obtained in terms of a nondimensional slope B=l of internal damping
coefficient variation at the instant of the excursion. The latter may be excluded using the
expression (8), thereby providing a direct relation between r̄p ¼ rp=rð0Þ and gp—that is between
peak values of radii ratio and of gðtÞ:Denote this relation as r̄p ¼ hðgpÞ for gpXu and its inverse by
h�1; then

gp ¼ u þ ðB=lÞ2ð1=2uÞ ¼ h�1
ðr̄pÞ ¼ u þ ð

ffiffiffi
u3

p
=2Þ½ð3=2kÞ ln r̄p	

2=3: (12)

These relations open the way to reliability predictions for the shaft system based on relevant
statistics of gðtÞ: Thus, the first-passage problem for rðtÞ with barrier r� is reduced to that for gðtÞ

with barrier g� ¼ h�1
ðr̄�Þ as evaluated by relation (12). Furthermore, p.d.f. of gðtÞ can be used to

obtain p.d.f. of r̄p; the latter may be of importance for evaluating low-cycle fatigue life for a
system subject to sporadic short-term dynamic instability. To this end the p.d.f. pgðgpÞ of peaks of
gðtÞ is obtained first from that of the gðtÞ itself as described in Refs. [5,6]; then the basic relation for
p.d.f. of a function of a random variable is applied [5]:

pðr̄pÞ ¼ pgðh
�1
ðr̄pÞÞjdh�1=dr̄pj: (13)

It should be just kept in mind that the p.d.f. (13) is nonzero for r̄pX1 rather than for r̄pX0 as long
as the radius of whirl is not zero in a stable state where gðtÞou: It goes without saying that the
unconditional p.d.f. pðr̄pÞ is normalized not to unity but to ProbðgðtÞ4uÞ; that is to total
probability for dynamic instability.
r (t)

ri,k

rp,k

tu,k ti,k tf,k tu,k+1 ti,k+1 tf,k+1

ri,k+1

rp,k+1

t

Fig. 1. Typical sketch of shaft vibration level illustrating intermittency due to short-term dynamic instability—radius of

whirl rðtÞ: Time instants tf ¼ tu þ 2B=l2 and ti ¼ tu þ B=l2 are identified for any k from the corresponding radii

rp ¼ rðtf Þ and ri ¼ rðtiÞ which are peak value of rðtÞ and value of rðtÞ at the inflexion point of curve ln rðtÞ; respectively.
Here, tu is starting at the instant of the response outbreak, that is, instant of upcrossing level u by gðtÞ; it can be

identified in this figure as tu ¼ tf � 2ðtf � tiÞ ¼ 2ti � tf :
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3. Identification of damping from the observed response

The explicit analytical solution (10) is particularly convenient for evaluating properties of the
shaft system from its measured on-line response which exhibits sporadic nonoverlapping
outbreaks in whirl radius as illustrated in Fig. 1. To this end one can use peak radius rp which is
attained at the instant tf ¼ 2B=lu for each outbreak, together with the corresponding radius ri at
the inflexion point of the curve ln rðtÞ: As can be seen from the solution (10), this inflexion point
corresponds to the peak of gðtÞ which is attained at local time instant ti ¼ B=lu ¼ tf =2:
Therefore,

ri ¼ rðtiÞ ¼ rð0Þ exp½ðk=3u2ÞðB=lÞ3	; so that rp=ri ¼ exp½ðk=3u2ÞðB=lÞ3	: (14)

Thus, for each one of the observed response outbreaks (two such outbreaks are shown in Fig. 1)
one can identify in a global time frame the instants tf ¼ tu þ tf =l and ti ¼ tu þ ti=l which
correspond to the peak radius rp and inflexion-point radius ri; respectively; subscript ‘‘u’’ denotes
the instants of upcrossings which can also be identified as long as tu ¼ tf � 2ðtf � tiÞ ¼ 2ti � tf :
We may now apply averaging for the time difference tf � ti and for the amplitude ratio over all
observed outbreaks of response (which may be properly numbered by using additional subscripts;
thus, subscripts ‘‘k’’ and ‘‘k þ 1’’ are assigned for outbreaks shown in Fig. 1). This averaging
which is equivalent to probabilistic averaging for an ergodic gðtÞ will be denoted by angular
brackets.
Let process gðtÞ be Gaussian, so that B the Raleigh p.d.f. [5,6], namely

pðBÞ ¼ ðB=l2Þ expð�B2=2l2Þ: (15)

Then,

htf � tii ¼ htii=l ¼ ð1=l2uÞ
Z 1

0

BpðBÞdB ¼
ffiffiffiffiffiffiffiffi
p=2

p
=lu (16)

and from the relation (14),

hlnðrp=riÞi ¼ ðk=3u2Þ

Z 1

0

ðB=lÞ3pðBÞdB ¼ ðk=u2Þ
ffiffiffiffiffiffiffiffi
p=2

p
: (17)

Now one may apply the formula for mean number of upcrossings nu of the level u per unit time by
the Gaussian process gðtÞ [5,6], namely

nu ¼ ðl=2pÞ expð�u2=2Þ: (18)

Its reciprocal is clearly seen to be the mean or expected time interval between two consecutive
upcrossings; one such interval namely tu;kþ1 � tu;k can be identified in Fig. 1. Therefore frequency
l and scaled total apparent mean damping factor u can be identified from the expressions (16) and
(18). Finally, formula (17) can be used to calculate k and thus sq as long as the quantity in its LHS
is estimated by averaging over all observed response outbreaks. Thus, the above procedure
provides on-line estimates both for the mean apparent damping coefficient—which may be
regarded as a nominal stability margin—and for standard deviation and mean frequency of its
random temporal variations.
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4. Conclusions

The Jeffcott rotor with temporal random variations of its coefficient of internal or ‘‘rotating’’
damping has been considered. This rotor may exhibit spontaneous transient outbreaks in its
dynamic response (forward whirl) due to brief excursions of the above coefficient into the domain
of dynamic instability. Analysis of this transient response has been made using parabolic
approximation for random temporal variations of the internal damping coefficient during the
excursions together with the asymptotic Krylov–Bogoliubov method of averaging over the
response period. It resulted, in particular, in explicit relation for peak value of the radius of whirl
in terms of peak value of the negative apparent total damping coefficient during the
corresponding excursion. In this way, reliability analysis for the shaft system as based on the
solution to the first-passage problem for the response or on evaluating probability density of
response peaks is reduced to the corresponding problems for the randomly varying coefficient of
internal damping. The above analytical solution has also been used to derive a simple
identification procedure for the rotor from its measured vibrational response. Namely, the mean
value of the damping coefficient can be estimated on-line as well as its standard deviation and
mean frequency of its temporal variations.
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